Finite Element Modeling of Thermo Creep Processes Using Runge-Kutta Method
نویسندگان
چکیده
منابع مشابه
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws
In this work we introducé and analyze the model scheme of a new class of methods devised for numencally solving hyperbohc conservation laws The construction of the scheme is based on a Discontinuous Galerkin fïnite element space-discretization, combined suitably with a high-order accurate total variation diminishing Runge-Kutta time-discretization, and a local projection which enforces the glob...
متن کاملTVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework
This is the second paper in a series in which we construct and analyze a class of TVB (total variation bounded) discontinuous Galerkin finite element methods for solving conservation laws ut + Ed I(fi(u))xi = 0. In this paper we present a general framework of the methods, up to any order of formal accuracy, using scalar one-dimensional initial value and initial-boundary problems as models. In t...
متن کاملRunge-Kutta-Chebyshev projection method
In this paper a fully explicit, stabilized projection method called the Runge-Kutta-Chebyshev (RKC) Projection method is presented for the solution of incompressible Navier-Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science and Education of the Bauman MSTU
سال: 2014
ISSN: 1994-0408
DOI: 10.7463/0315.0759406